MAINE ASSOCIATION FOR SEARCH AND RESCUE

Rescue Team Member Certification Standard Appendix A

Training Requirements

I. Introduction

- A. To be certified as a Rescue Team Member a person must complete all of the requirements included in this Appendix
- B. For the purposes of this standard, definitions of terms, and examples of systems and techniques, shall be those shown and described in the following reference(s):
 - 1. "Technical Rescue Rigger's Guide" by Rick Lipke, second edition
- C. Other terms, systems, and techniques shall be considered by the Standards Committee, upon written request

II. Rescue Operations

- A. Explain the significance of the "Golden Hour" to wilderness rescue
- B. Define "rescue triage" and explain its significance to wilderness rescue
- C. For a given rescue scene in steep to high angle terrain:
 - 1. Recommend the type of rescue needed
 - 2. List the number of victims, their location(s), the rescue priority for each, and the resources needed
 - 3. List the hazards, both immediate and potential, and explain the risk associated with each vs. the benefit of rescue
 - 4. Describe how to avoid the most likely risks for rescuer and victim(s)
 - 5. Describe how to locate and reach victim(s)
- D. Define low, steep, and high angle terrain
- E. List the hazards associated with, and skills required for, the rescue system(s) employed for each terrain type
- F. Describe how the following factors affect a speed and safety of a rescue operation:
 - 1. Time to access victim
 - 2. Rescue terrain, including topography and ground cover
 - 3. Weather, both current and forecast
 - 4. Time of day
 - 5. Environmental dangers
 - 6. Rescuer ability:
 - i. Training
 - ii. Experience
 - 7. Condition of rescuers
 - i. Physical
 - ii. Mental
 - 8. Condition of victim

- 9. Number of victims
- G. Define the functions of the following personnel in a rescue operation:
 - 1. IC
 - 2. Operations
 - 3. Safety
 - 4. Medical Officer
 - 5. Main line operator
 - 6. Belay operator
 - 7. Edge attendant
 - 8. Litter attendant
- H. Explain the effects of the following factors on rope rescue systems:
 - 1. Loads
 - 2. Forces, including magnitude and direction
 - Fall line
 - 4. Friction
 - 5. Backup vs. redundant systems

III. Communications

- A. Demonstrate the use of clear and concise verbal commands in a rope rescue operation (for an example see the pages 1-2 of the "Technical Rescue Rigger's Guide" by Rick Lipke, second edition)
- B. Demonstrate the use of whistle signals, as defined in ASTM standard F1768, in a rope rescue operation

IV. Administration

- A. Demonstrate proper record keeping, including completion of the following:
 - 1. Rope use log
 - 2. Any other relevant unit inspection logs

V. Equipment

- A. Explain the reasons for selection and reasons to carry, and demonstrate the proper use of, the following PPE:
 - Seat harness
 - 2. Chest harness
 - Helmet
 - 4. Gloves
 - Carabiners
 - 6. Personal use slings or lanyards (i.e. Prusik loops, Purcells, etc.)
- B. List approximate breaking strengths, in pounds or kiloNewtons, for the following rescue equipment:
 - 1. 11mm Nylon kernmantle static or low-stretch rescue rope
 - 2. 8mm Nylon kernmantle accessory cord
 - 3. 1" Nylon tubular webbing
 - 4. Aluminum carabiners
- C. List the advantages and disadvantages of the rescue litter with which he or

© Maine Association for Search and Rescue Rescue Team Member Certification Standard Appendix A - Training Requirements Revision 0 -- 12 September 2010

- she will usually work
- D. Explain the reasons for selection and reasons to carry, and demonstrate the proper use of, all unit equipment which the Rescue Team Member normally employs in rope rescue operations
- E. Demonstrate the ability to inspect personal and team equipment for the purpose of identifying wear, damage, and operational readiness
- F. Demonstrate the ability to perform personal and team equipment maintenance procedures, including cleaning, inspection for damage and wear, and repacking

VI. Knots

- A. Construct the following knots, hitches, and bends, as shown in reference 1 (note all must be neatly tied and properly dressed)¹
 - 1. Bowline with tie-off
 - 2. Interlocking long-tail bowlines
 - 3. Figure 8 follow-through
 - 4. Figure 8 on a bight
 - 5. Butterfly knot
 - 6. Stopper knot (figure 8, overhand, or equal)
 - 7. Ring bend (in 1" tubular webbing)
 - 8. Double overhand bend
 - 9. Münter hitch
 - 10. Clove hitch
 - 11. Triple wrap Prusik hitch
- B. Construct a Radium Load Release Hitch, or equal, as shown in reference 1
- C. Construct an improvised seat harness
- D. Construct an improvised chest harness

VII. Patient Care

- A. For a given scenario, perform triage of multiple victims
- B. Demonstrate the performance of basic patient emergency care, including treatment of the following:
 - 1. Clear airway
 - 2. Ensure proper ventilation
 - 3. Check circulation and resolve issues affecting it
 - Control bleeding
 - 5. Protect spine from further injury
 - 6. Mitigate the effects of shock
- C. Demonstrate the use of personal protective equipment, including:
 - 1. Gloves
 - Face mask
 - 3. Eye protection
- D. Demonstrate body fluid isolation methods for a patient

¹ Alternates to these knots may be used with the prior agreement of the Standards Committee.

- E. Explain the effects of extended transport on patient care
- F. Describe how to mitigate the effects of extended transport on a patient's condition
- G. Describe the legal requirements, and practical considerations, for transferring patient care to local EMS personnel

VIII. Patient Packaging

- A. Package a patient in a litter, providing for the following:
 - 1. Spinal immobilization
 - 2. Patient protection (thermal, environmental, etc)
 - 3. Access to injuries
 - 4. Access to patient care equipment, e.g. BP cuff, etc.
 - 5. Patient restraint and attachment to the litter
 - Patient without a harness
 - ii. Patient with a harness

IX. Litter Rigging

- A. Rig a litter for a steep angle rescue
- B. Rig a litter for a high angle rescue

X. Anchor Selection and Construction

- A. List natural anchors that are suitable for a rescue load including the following:
 - 1. Appropriateness for the location
 - 2. Risks and benefits
- B. Explain the effects on anchor system design of the following:
 - 1. Interior angles
 - 2. Alignment
 - 3. Anchor material strength
- C. Perform the following:
 - 1. Tie a "Wrap 3 Pull 2" anchor
 - 2. Tie a high strength tie-off (aka tensionless hitch)
 - 3. Tie a two-point distributive anchor
 - 4. Back tie an anchor
 - 5. Use a vehicle as an anchor

XI. Steep Angle Litter Carry

Perform as a side attendant in a three person, steep angle, litter carry.

Demonstrate the following during the operation:

- A. Use of an effective primary attachment
- B. Use of an effective belay
- C. Control of the litter
- D. Clear and effective communications with all of those involved in the operation

XII. Belay Line Rigging and Operation for Low, Steep and High Angle Rescue

A. Explain the purpose and function of the belay system in a rescue operation

© Maine Association for Search and Rescue Rescue Team Member Certification Standard Appendix A - Training Requirements Revision 0 -- 12 September 2010

- B. Build a Tandem Prusik Belay system for raising and lowering a rescue package, including the following:
 - 1. Explain the risks inherent to the system
 - 2. List the advantages and disadvantages of the Tandem Prusik Belay
 - 3. List the advantages and disadvantages of an alternative to the Tandem Prusik belay
- C. Operate a Tandem Prusik Belay system during a litter raise and lower operation. Demonstrate the following during the procedure:
 - 1. Primary attention on belay operation
 - 2. Maintain clear and effective communications with all of those involved in the operation
 - 3. Lock the belay
 - 4. Tie-off the belay to leave it unattended
 - 5. Release a locked belay while maintaining control of the rope
 - 6. Pass a knot through the system

XIII. Main Line Rigging and Operation for Steep and High Angle Rescue

- A. Explain the purpose and function of the main line system in a rescue operation
- B. Build a safe and effective main line system² for lowering and raising a rescue package, including the following:
 - 1. Explain the risks inherent to the system
 - 2. Explain the reason for selection of the components and technique used
- C. Construct the following mechanical advantage systems correctly and clearly, with no twists in system ropes:
 - 1. Simple 3:1
 - 2. Simple 3:1 with CD (Change of Direction)
 - 3. Complex 5:1
 - 4. Simple 5:1
 - 5. Compound 9:1
- D. Operate a main line system during a raise and lower operation. Demonstrate the following during the procedure:
 - 1. Primary attention on belay operation
 - 2. Maintain clear and effective communications with all of those involved in the operation
 - 3. Maintain clear and effective control of the haul team
 - 4. Tie-off brake rack to leave it unattended
 - 5. Convert system from raise to lower
 - Ensure minimum rope loss during maneuver
 - 6. Convert system from lower to raise
 - Ensure minimum rope loss during maneuver
- E. Pass a knot through the system during raise and lower

² Any system shown in reference 1 is acceptable. Alternate systems may be used with the prior agreement of the Standards Committee.

XIV. Ascending and Descending Ropes

- A. Ascend a rope
 - 1. Use Prusiks for ascent system
 - 2. Use a self belay
- B. Descend a rope by rappelling
 - 1. Use a self belay
 - 2. Tie off rappel device mid-rappel, then continue descent
- C. Demonstrate conversion from descending to ascending, and reverse

XV. Edge Attendant

- A. Demonstrate the construction and use of a safe and effective edge restraint
- B. Explain the purpose of vectoring for edge transition
- C. Demonstrate the use of vectoring during raise and lower
- D. Demonstrate the use of the "Pike and Pivot" or an equivalent maneuver for simplifying the edge transition during a litter raise operation